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Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter 
at university level. The research reported here is as part of the first named author's recent PhD thesis 
where she created and applied a theoretical framework combining the strengths of two major 
mathematics education theories in order to investigate the learning and teaching of some linear 
algebra concepts. This paper highlights some of the overall findings of this research and suggests 
applications for learning and teaching in undergraduate mathematics classrooms. 

Introduction 

In recent years many mathematics education researchers have been concerned with 
students’ difficulties related to the undergraduate linear algebra courses. There is 
agreement that teaching and learning this course is a frustrating experience for both 
teachers and students, and despite all the efforts to improve the curriculum the learning of 
linear algebra remains challenging for many students (Dorier & Sierpinska, 2001). 
Students may cope with the procedural aspects of the course, solving linear systems and 
manipulating matrices, but struggle to understand the crucial conceptual ideas 
underpinning them. The concepts may be presented through a definition in natural 
language, which may be linked to a symbolic presentation. These definitions are 
considered to be fundamental as a starting point for concept formation and deductive 
reasoning in advanced mathematics (Vinner, 1991; Zaslavsky & Shir, 2005).  Interestingly 
enough, at the end of the course many students do reasonably well in their final 
examinations, since the questions are mainly set on using techniques and following certain 
procedures, rather than understanding the concepts (Dorier, 1990). This, as Sierpinska, et 
al. (2002, p. 2) describe is a “waste of students intellectual possibilities”. They believe 
“linear algebra, with its axiomatic definitions of vector space and linear transformation, is a 
highly theoretical knowledge, and its learning cannot be reduced to practicing and 
mastering a set of computational procedures” (ibid, p. 1). 

The action-process-object-schema (APOS) development in learning proposed by 
Dubinsky and others (Dubinsky & McDonald, 2001) suggests an approach different from 
the definition-theorem-proof that often characterises university courses. Instead 
mathematical concepts are described in terms of a genetic decomposition into their 
constituent actions, process and objects in the order these should be experienced by the 
learner. In more recent years Tall has introduced the idea of three worlds of mathematics, 
the embodied, symbolic and formal (Tall, 2004). The worlds describe a hierarchy of 
qualitatively different ways of thinking that individuals develop as new conceptions are 
compressed into more thinkable concepts (Tall & Mejia-Ramos, 2006). The embodied 
world, containing embodied objects (Gray & Tall, 2001), is where we think about the 
things around us in the physical world, and it “includes not only our mental perceptions of 
real-world objects, but also our internal conceptions that involve visuo-spatial imagery.” 
(Tall, 2004, p. 30). The symbolic world is the world of procepts, where actions, processes 
and their corresponding objects are realized and symbolized. The formal world of thinking 
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comprises defined objects (Tall, Thomas, Davis, Gray, & Simpson, 2000), presented in 
terms of their properties, with new properties deduced from objects by formal proof. To 
examine the usefulness of these theories in learning and teaching, for each chosen linear 
algebra concept in the research (vector and scalar, linear combination, linear 
Independence/dependence, span, basis, eigenvalues and eigenvectors) a preliminary 
framework was constructed (see Figure 1 for the framework for vector and scalar 
multiplication). The framework was constructed by creating a grid with 12 cells to examine 
a learner’s action, process, and object thought processes of the concept (the left-hand 
column) in each of the three mathematical worlds of embodied, symbolic and formal (the 
top cells). This formulation was achievable since it is possible that students can do actions, 
think about processes, and encapsulate their processes to form objects in each of the 
embodied, symbolic and formal worlds of mathematical thinking. Despite the fact that 
Dubinsky’s APOS theory refers to learners’ mental views and Tall’s worlds are about 
mathematical thinking, the theories seem to blend naturally together. Such a framework 
allows researchers to evaluate students’ conceptual understanding of linear algebra and 
observe the way students learn. Furthermore, it was designed to help teachers and 
instructors to cover a spectrum of representations in the classroom in such a way that 
teaching based on it would help students build linear algebra knowledge and give them the 
impression that mathematics is not “completely cut, dried and salted away” (Mason, 2002, 
p. 4). The goal of this research was to find the level of students’ conceptual and procedural 
understanding of the linear algebra concepts, their difficulties with these concepts, the 
effects of using embodied ideas in teaching/learning of linear algebra, and the usefulness of 
the framework. 

Method 

This research comprised several qualitative case studies to study students’ thinking 
about some basic linear algebra concepts, namely vector, scalar multiple, linear 
combinations, linear dependence/independence, span of vectors, subspace, basis, and 
eigenvectors and eigenvalues. The participants were first and second year general 
mathematics students from the University of Auckland who had volunteered to take part in 
this study. The lectures were taught by first named author and were designed based on the 
proposed framework (see example in Figure 1) to give students the overall experience of 
the concepts in the embodied, symbolic and formal worlds of mathematics. For example, 
linear independence of vectors was presented by showing embodied, visual aspects of the 
concept first. This was then linked to the notion of linear combinations in the form of 
algebraic and matrix symbolisations. The formal definition was given after the symbolic 
and visual aspects were addressed. Students were given a set of questions (see sample in 
Figure 2) on variety of concepts in linear algebra, which was designed to examine their 
embodied, symbolic and formal understanding, rather than the procedural abilities. As part 
of the case studies interviews and concept maps were also employed. For comparison 
reasons a recent PhD in mathematics also participated in this study. To protect students’ 
privacy students are referred by the case studies that they were involved in and a number as 
they were listed. For example student 2B-5 refers to the fifth second year student on the list 
from case study 2(b). For further details see the first-named author’s thesis (Stewart, 2008). 
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Figure 1. A framework for the concept of vector and scalar multiplication.  

  
Figure 2.  A sample of test questions. 

 
Results 

The analysis of the data is based on the progression of the featuring concepts 
categorised into the following groups: vector and scalar multiples; linear combinations and 
span of vectors; linear dependence/independence of vectors; basis and subspace; 
eigenvalues and eigenvectors. Two reasons behind the selection in this study were firstly 
that they occur early in linear algebra courses, and secondly, they represent a natural 
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progression of ideas from vector and scalar multiple to the study of eigenvalues and 
eigenvectors. For many students the rapid development of these concepts, sometimes 
within a single lecture, creates problems as they are built on each other and soon are 
considered as assumed knowledge. It was hoped that investigating each group of concepts 
in detail may assist in understanding the reasons behind these difficulties. The discussion 
below gives a brief description based on the overall findings. 

Students’ Thinking About Vector and Scalar Multiplications 

The analysis of the questions on vector and scalar multiples showed that although 
students were able to do trivial actions, for example adding two vectors geometrically, they 
had difficulty in seeing a vector as an object (free vector), and thus were unable to add 
vectors geometrically, which requires one to be lifted up and then added to the tip of 
another vector. The symbolic-process view of scalar multiple, kv, of a vector v was also 
difficult for some students as they did not consider k as a scalar and instead thought of k as 
a vector, thus they performed a scalar product (or a dot product) between a scalar and a 
vector. This possibly shows their confusion between the two notions of scalar multiple and 
scalar product (a language difficulty) and also confirms their unfamiliarity with 
recognising a vector and a scalar in different representations (in this case symbolic-
algebraic). The embodied ideas of scalar multiple of a vector were mainly perceived 
procedurally by many students who did not have a process view of scalar multiples of the 
given vector. Consequently, most students only drew several separate lines (see Figure 3) 
and did not consider showing all the scalar multiples on a single straight line (a process). 

 
Figure 3.  Student 1B-8’s response relating to the scalar multiplication of the vector. 

 Students’ Thinking About Linear Combination and Span of Vectors 
Students’ responses to questions on the concept of linear combination showed that a 

majority of first year students had considerable difficulties with defining the concept and 
the notion seemed foreign to most students. Some thought of ‘linear equations’ instead of 
‘linear combinations’, with one student even giving the equation of a line y = ax + b, 
possibly due to a language difficulty. Evidence showed that most second year students who 
were about to start the course had absolutely no idea about this concept from their previous 
courses. Also based on the findings in this research, right at the end of the semester some 
very successful second year students struggled to remember the key aspects of the concept, 
as this concept was often introduced through a formal definition. For example in response 
to a request to define the term linear combination, 45.5% of students in case study 2(b) 
(N=11) did not write any answer, and the remaining 54.5% only gave procedural or 
incomplete responses. Student 2B-2’s response in defining the term linear combination 
was: “something like xv +yu; x, y belong to IR”. In an interview he said “linear 
combination, hmm . . . I can’t quite remember the definition, I can just remember those 
forms something like b = x1v1 + x2v2 and something like that and x belong to IR. I only can 
remember these things”. When he was asked for further explanation he said: “Hmm 
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difficult! Linear combination is an object class in a space formed by the two vectors and x, 
y are scalars, this is my understanding of linear combination”. This clearly demonstrates 
his lack of knowing the definition and not having an object view of the concept in general.  

In contrast, building the concept through the embodied, symbolic and formal worlds of 
mathematics, starting from vectors and scalar multiples seemed to be effective for those 
who attended the researcher’s summer course in case study 2(c) (N=16), since at the end of 
the first lecture, 72.5% of students were able to give a description (mainly at the action or 
process level with occasional ones at the object level) for the concept in their own words. It 
was also noted that a majority of students had the procedural abilities to calculate 
algebraically the linear combination (actions), however, some first and second year 
students were affected by their poor arithmetic skills. Student responses to Question 4 
relating to the embodied aspects of vector addition and linear combination showed 
misconceptions in a number of areas which mainly rose from their unfamiliarity with the 
concept of vector. Only 37% of first year students (in the first test), and 45.4% of second 
year students from case study 2(b) drew the correct diagram (a process) as some students 
lacked basic skills constructing parallelograms or triangles, keeping the correct direction 
for the given vectors, and constructing the correct direction for the resultant vector. 
However, a high percentage (68%) of the researcher’s students from case study 2(c) were 
able to draw a correct (an embodied process) diagram (See figure 4). On the other hand, 
the PhD graduate who gave a object-formal definition for the term linear combination, had 
no problem with symbolic-algebraic manipulations of vectors and was able to recognise 
the symbolic-algebraic representation of the linear combination and draw an embodied-
process representation. 

  
Figure 4. Students 2B-1 (LHS) and 2C-1’s embodied thinking of linear combination. 

Students thinking about linear independence/dependence 

 Students’ responses to the concept of linear independence showed that although 
students from case study 2(b) struggled to define clearly the term linear independence, 
most students from the researcher’s class were confident describing the concept in their 
own words. In Question 3, to examine students symbolic-matrix action views many 
students from both groups (case studies 2(b) and 2(c)) created a matrix and some showed a 
symbolic-matrix view, and two students from case study 2(b) and eight from case study 
2(c) concluded that the vectors were linearly independent (a process-symbolic), although 
this concept was not an explicit requirement for this question. Moreover, five students from 
the researcher’s class also approached this question visually by drawing the vectors on a 
diagram (versatile thinking), showing the ability to link representations (see Figure 5). In 
Question 5, related to distinguishing between the two diagrams (an embodied-process 
view), only 36% of students from case study 2(b) were able to relate the correct diagram to 
the concept of linear dependence. However, all students in the researcher’s class choose the 
correct diagram.   



507 

 
              Figure 5. Students 2C-1 (LHS) and 2C-2’s use of diagrams as part of their embodied world thinking. 

Students’ Thinking About Basis and Subspace 
  In order to construct the concept of basis students need to build on a number of 

previous concepts. A genetic decomposition (GD) (e.g. Czarnocha, Loch, Prabhu, & 
Vidakovic, 2001) of basis requires a combination of GD’s of span and linear independence 
of vectors, a link that the students in this study often didn’t make. The majority of students 
in case study 2(b) were unable to define the terms basis and subspace, with eight students 
writing nothing at all. Those who gave a definition for the term basis, gave a procedural 
definition based on an action relating to find a basis (action-symbolic-matrix view). This is 
not surprising since it is easier than grappling with the formal world ideas, and is the 
method emphasised in the course. For example, the course notes speak about how to find 
“a basis for the Nullspace of an m×n matrix A”, “a basis for the column space of a matrix”, 
and “the span of a set of vectors v1, v2,…vn, [by forming] the matrix A =  
[v1, v2,…vn] with these vectors as its columns”, and gives a symbolic, matrix method for 
each. In contrast, only three students in the researcher’s class did not give a definition, the 
majority of students were able to mention that the vectors must be linearly independent and 
span,  which was also demonstrated in students’ concept maps (see Figure 6).  

  
Figure 6. Student 2B-2’s (LHS) and student 2C-5’s linking of basis to span and linearly independent is 

shown in their concept maps. 

  Students thinking about eigenvectors and eigenvalues 
The majority of students were unfamiliar with embodied ideas of eigenvalues and 

eigenvectors, and they preferred an action-symbolic approach in describing the term 
eigenvector. For example in case study 2(a) (N=42) a majority of students referred to the 
procedural part of the definition (Ax =λx). Results also indicated the first year students’ 
difficulties in case study 1(a) (N=10) in finding the eigenvectors and eigenvalues (action-
symbolic-matrix manipulations). Question 6 (a process-symbolic-algebra question) was 
designed to discover a possible process-object complexity with Ax = λx, in the sense that 
although the two sides of the equation are quite different processes, they have to be 
encapsulated to give equivalent mathematical objects. In this case the left hand side is the 
process of multiplying (on the left) a vector (or matrix) by a matrix, while the right hand 
side is the process of multiplying a vector by a scalar resulting in the same vector as the 
final object. Results showed that the progression, working within the algebraic symbolic 
world, from Ax = λx to (A − λI)x = 0 is not perceived as straightforward by many students 
as they have difficulty by the two different processes in the first equation, and do not know 
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what identity the I refers to.  Figure 7 shows that this affected students’ ability to complete 
the relatively simple three-line transformation of the equations. 

 
Figure 7. Working of students 2A-41, 2A-24 and 2A-34 on question 6 (left to right). 

 Discussion and Conclusions 
The extensive evidence revealed that the majority of students had major problems 

understanding the concepts that are the essence and foundation of a linear algebra course. 
Many students had difficulties connecting their understanding of one concept to other 
related concepts (a process-formal). For example many students were not able to link basis 
to linear independence and span. It seems that a sizable number of students had difficulty 
in expressing their understanding of the definitions. The framework proved to be a 
valuable tool in analysing students’ thinking by providing evidence of students’ level of 
thinking based on the specific cells or regions of the framework. For example we could use 
the framework to trace where students’ thinking was at. By finding out a student’s weak 
points in their understanding and thinking, the instructor can see the areas that need 
improvement and how to address them. Based on the results of this research students were 
mainly thinking and representing their understanding of the concepts in a manner described 
by the action-symbolic-matrix or/and process-symbolic-matrix cells of the framework (the 
four cells in the centre section). Although a number of students from the first-named 
author’s class demonstrated embodied or object views, the majority of students tended to 
show an action/process view in the symbolic world. So the question would be, if the three 
worlds of the mathematical thinking are hierarchical, how did the students reach the 
symbolic world without passing through the embodied? In other words if student thinking 
is based in the symbolic world surely they would have had embodied ideas too, since they 
are relatively easier than the symbolic ones. The answer to this question is not trivial. In 
Tall’s description of the three worlds, he often refers to the entire mathematics from school 
mathematics to calculus and more advanced algebra  right through to the definitions and 
axioms in the formal world. There has been no study examining the development of a 
single concept of advanced mathematics through these three worlds. How could we apply 
his theory to a single concept? In other words, to construct conceptual understanding does 
one have to start from the embodied, travel through the symbolic, and finally arrive at the 
formal world? As Tall reveals in an ideal world this is likely the case. Most students need 
to symbolise the embodiment and embody the symbolism first and only after fully 
integrating them they will reach the formal world. However, in the real world it is possible 
to be solely in the symbolic world of thinking by following the steps of the instructor in the 
class. In contrast, a mathematician can comfortably live in the symbolic and embodied 
worlds since he is able to reverse and construct embodied views, as well as going forward 
to the formal world (as we observed in the case of the PhD graduate in this study). The 
possession of a rich schema allows him/her to tie all the pieces of his knowledge in a way 
that the student may not be able to. Thus, the claim is that it is the embodied view that 
gives deep meaning to the concept allowing us move toward the formal world. In the case 
of the students in this research, it appears that since they often lacked embodied aspects of 
the concepts and were trapped in the symbolic world, and were not able to move to the 
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formal world of mathematical thinking. It is suggested that a central goal of mathematics 
education should be to increase the power of students’ representations (Greer & Harel, 
1998). Employing a visual, embodied approach to the teaching of linear algebra concepts, 
which are often treated symbolically or formally, may enrich students’ understanding and        
satisfy this goal (Stewart & Thomas, 2007). 
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